STRATEGY | TACTICS |
CLOSURE ON INTEGRAL DIVISION ---------------------> SHIFT| ^CLOSURE ON FROM| |DEFINED INTEGERS| |QUOTIENT | |DIVISION | |(RESTRICTED V-------------------->SYSTEM) DEVELOP DEFINED QUOTIENT ARITHMETIC |
DIVIDEND@D;
divisor @ d ¬ = 0;
DEFINED QUOTIENT: [D d] s. t.
D is INTEGRAL MULTIPLE of d; QUOT. CLOSURE: for OPRATN o and DFND QUOT: d1 o d [D1 d1] > [ [D1 d1] < [D2 d2] <--> D1 * d2 < D2 * d1; [D1 d1] = [D2 d2] <--> D1 * d2 = D2 * d1; [D1 d1] + [D2 d2] = [D1 * d2 + d1 * D2] [d1 * d2];   [D1 d2] - [D2 d2] = [D1 * d2 - d1 * D2] [d1 * d2]; [D1 d1] * [D2 d2] = [D1 * D2] [d1 * d2]; [D1 d1] [D2 d2] = [D1 * d2] [D2 * d1] |
CLOSURE ON A TOTAL NUMBER SYSTEM -------------------------> SHIFT FROM| ^ADDITION, SUBTRACTION, DEFINED| |MULTIPICATION, (NONZERO) DIVISIOM QUOTIENT| |CLOSED IN TOTAL NUMBER SYSTEM ARITHMETIC| | | | V----------------------- > DEVELOP INTEGAL VECTOR ARITHMETIC COMBINING |
1st VECTOR COMP. = u
2nd VEC. COMP. = v VECTOR: [u, v] s.t. the COMPS are INTEGERS; ARITHMETIC OF VECTORS OF INTEGERS: [u1, v1] > [u2], v2] <--> u1 * v2 >u2 * v1; [u1, v1] < [u2, v2] <--> u1 * v2 < u2 * v1; [u1, v1] = [u2, v2] <--> u1 * v2 = u2 * v1; [u1, v1] + [u2, v2] = [u1 * v1 + u2 * v2, v1 * v2]; [u1, v2] - [ u2, v2] = [u1 * v2 - v1 * u2, v1 * v2]; [u1, v1] * [u2, v2] = [u1 * u2, v1 * v2]; [u1, v1] [u2, v2] = [u1 * v2, [u2 * v1] WHEREAS DEFINED QUOTIENTS HAVE RESTRICTED COMPONENTS, VECTOR COMPONENTS DO NOT, PROVIDED NOT VIOLATING INTEGRAL ARITHMETIC. ALSO, NOTE THAT DIVISION ON VECTORS BECOMES PRODUCT ON COMPONENTS, HENCE ALWAYS WORKS! THUS, CLOSURE GOAL IS ACHIEVED FOR VECTOR DIVISION! |
"AWKWARD" VECTOR NOTATION ------------------------->USE FRACTION SHIFT| ^SIGNS, RESULTING FROM| |IN 3 CLASSES VECTORS| |OF RATIONALS OF| |CLOSED FOR INTEGERS| |MULTIPLICATION & V----------------------- >DIVISION REDUCE: 3 EQUIVALENCE CLASSES OF VECTORS COMBINING |
SO "RATIONALS/FRACTIONS" ARE VECTORS OF INTEGERS, BUT THE VECTOR NOTATION IS AWKWARD &
CAN BE BYPASSED. HOW? VIA THE VECTOR EQUIVALENCE RULE: [u1
, v1] = [u2,
v2] <--> u1 * v2 = u2 *
v1. GIVEN A VECTOR WHOSE FIRST COMPONENT IS AN INTEGRAL MULTIPLE, k OF THE SECOND COMPONENT -- [u,v] = [kv,v], THEN, BY THE EQUIVALENCE RULE, [u,v] = [kv, v] = [kv/v,v/v] = [k,1], AN EQUIVALENCE CLASS OF INTEGRAL VECTORS. BUT SUPPOSE SECOND COMPONENT IS INTEGRAL COMPONENT OF FIRST COMPONENT -- [u,v] = [v,Kv], SO, BY THE EQUIVALENCE RULE, [u,v] = [v,kv] = [v/v,kv/v] = [1,k], AN EQUIVALENCE CLASS OF "EGYPTIAN FRACTIONS" (PL, as in our coinage). THE THIRD POSSIBILITY IS NEITHER OF THESE CASE, FOR AN EQUIVALENCE CLASS OF "FRACTIONS". SO WE BYPASS THE VECTOR NOTATION BY USING THE SOLIDUS SIGN, "/" BETWEEN INTEGRALS, FOR RATIONALS. |