This reduction operator (reducer) merges nonextremal elements with the same File number and reduces max in RANK by 1. Thus, using the lattice-coordinate, [Rank #, File #], WE HAVE:DISTRIBUTIVE [3,1] max /\ / \ / | \ / | \ / | \ / | \ / | \ / | \ / | \ / | \ [2,1] [2,2] [2,3] |\ / \ /| | \ / \ / | | \ / \ / | | \ / \ / | | / \ | | / \ / \ | | / \ / \ | | / \ / \ | [1,1] [1,2] [1,3] \ | / \ | / \ | / \ | / \ | / \ | / \ | / [0,1] minBy reduction -- given [X] º [[1,1],[2,1]], [Y] º [[1,2],[2,2]], [Z] º [[1,3],[2,3]] -- this becomes:MODULAR [3,1] max /|\ / | \ / | \ / | \ [X] [Y] [Z] \ | / \ | / \ | / \|/ [0,1] minBy the subjector operation, one of modular element of Rank 1 is subjected to another one, raising the latter and max in Rank, achieving a nomodular lattice, as follows:NONMODULAR [3,1] / \ / \ / Z=[2,1] / | / | X=[1,1] Y=[1,2] \ / \ / \ / \/ [0.1] min