REFERENCES

_________________________________________________________________________________________________
1. New Foundations of Physics, David Hestenes.
2. Eric's
3. Calculus, Karl Menger.
4. Boole's Logic and Probability, Theodore Hailperin, 1976. 5. "Boole's algebra is not Boolean algebra", Mathematics Magazine, 54, 5, 4-16,1982
6. The VNR Concise Encyclopedia of Mathematics, various editors, Van Nostrand, 1975.
7. Schaum's Outline Series on Math
8. Pi in the Sky, Devlin
9. Patterns of Mathematics, Devlin
10. Facts Into Figures, Moroney.
11. Number Theory and Its History, Oystein Ore (modul, p. 159).
12. Aufbau der Geometrie aus dem Spiegelungsgegriff, E. Bachmann, 1959. (Euclidean geometry derived entirely from reflection. Can this be translated or digested in English?)
13. Crystallographer.
14. "
15. The Variational Principles of Mechanics, Cornelius Lanczos.
16. The World of Mathematics, Kasner & Newman.
17. Foundations of Mathematical Logic, Haskell B. Curry.
18. A Survey of Modern Algebra, Garret Birkhoff and Saunder MacLane.
19. [W]hat counts as reality ... as a glass of water or a book or a table ... is a matter of what categories we impose on the world .... Our concept of reality is a matter of our [linguistic] categories." J. R. Searle, The Philosophy of Language, 1978.
20. Bypasses, A Simple Approach to Complexity, Z. A. Melzak.
21. Companion to Concrete Mathematics, Z. A. Melzak
22. Mathematical Ideas, Modeling, and Applications, Z. A. Melzak.
23. Essays in the History of Mechanics, Clifford Truesdell, 1968. (The best I know on the mathematical physics of Newton, the Bernoullis, Euler, Fermat, etc.)
24. Universal Algebra, P. M. Cohn, 1981.
25. 100 Years of Mathematics, George Temple, 1981.
26. The Medieval Machine, The Industrial Revolution of the Middle Ages, by J. Gimpel.
27. Mathematical Thought from Ancient to Modern Times, vols. I, II, III, Morris Kline, Oxford U. Press, 1972.
28. Geometry, Topolog, and Physics, Nakhara.
29. Discovering the Natural Laws, Milton A. Rothman.
30. Fantasia Mathematics, Ed. Clifton Fadiman. (Many delightful stories and verse with mathematical background.)
31. Clifford Algebras and Their Application in Mathematical Physics, Eds. J.S.R. Chisholm and A.K. Common. (Proceedings of the NATO and SERC Workshop on Clifford Algebras ... at University of Kent, Canterbury, U.K., 1985)